Seed 1: Harnessing Mixed Anion Systems to Create Novel Magnetic Properties

Danna Freedman | Chemistry

Precise synthetic control of the local electronic structure of metal centers within materials offers the potential to engender exotic physical properties. In particular, tuning the electronic structure of metal centers enables the creation of strongly correlated electron systems, enabling researchers to ask fundamental questions about magnetism and superconductivity. Within this Seed, a team of researchers is working on harnessing classes of mixed anion systems to discover and manipulate magnetic and superconducting properties of materials. Currently, numerous materials offer the potential to host topologically interesting phenomena, thereby tying into the NSF goal of creating new quantum materials. Indeed, any material that offers fundamental excitations that differ from previously studied particles is of interest within this area.

Seed 2: Designing Materials Using Directed Evolution

Muzhou (Mitchell) Wang | Chemical and Biological Engineering

The goal of this Seed is to develop new materials with unique properties through directed evolution. Through genetic mutation, protein expression, and high throughput materials screening, this Seed is harnessing the power of biological evolution for materials design. Our Seed is developing high throughput protein expression and purification techniques to synthesize sufficient quantities of material for characterization of mechanical and interfacial properties. Parallel efforts are exploring high-throughput screening methods to identify successful mutants within a large genetic library. Our work is developing new materials and understanding how existing biomaterials may have been developed through eons of evolution.